Navigation Functionalities for an Autonomous
نویسندگان
چکیده
This thesis was written during the WITAS UAV Project where one of the goals has been the development of a software/hardware architecture for an unmanned autonomous helicopter, in addition to autonomous functionalities required for complex mission scenarios. The algorithms developed here have been tested on an unmanned helicopter platform developed by Yamaha Motor Company called the RMAX. The character of the thesis is primarily experimental and it should be viewed as developing navigational functionality to support autonomous flight during complex realworld mission scenarios. This task is multidisciplinary since it requires competence in aeronautics, computer science and electronics. The focus of the thesis has been on the development of a control method to enable the helicopter to follow 3D paths. Additionally, a helicopter simulation tool has been developed in order to test the control system before flight-tests. The thesis also presents an implementation and experimental evaluation of a sensor fusion technique based on a Kalman filter applied to a vision based autonomous landing problem. Extensive experimental flight-test results are presented. The work in this thesis is supported in part by grants from the Wallenberg Foundation, the SSF MOVIII strategic center and an NFFP04-031 ”Autonomous flight control and decision making capabilities for Mini-UAVs” project grant. Department of Computer and Information Science Linköping universitet SE-581 83 Linköping, Sweden
منابع مشابه
Navigation Techniques of Mobile Robots In Greenhouses
With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...
متن کاملNavigation Techniques of Mobile Robots In Greenhouses
With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملA Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm
In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...
متن کاملVision-based Navigation System for Autonomous Urban Transport Vehicles in Outdoor Environments
This paper describes o vision-based system for autonomous urban transport missions in outdoor environments. Vision-based speciolised tasks ore implemented for particular functionalities such as lane tracking, and navigation along intersections. High level knowledge about goals and intentions is extractedfrom an apriori map so as to schedule the global mission and to direct the behaviours of the...
متن کاملAutonomous Rover Navigation on Unknown Terrains Functions and Integration
Autonomous long range navigation in partially known planetary-like terrain is an open challenge for robotics. Navigating several hundreds of meters without any human intervention requires the robot to be able to build various representations of its environment, to plan and execute trajectories according to the kind of terrain traversed, to localize itself as it moves, and to schedule, start, co...
متن کامل